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A B S T R A C T

In IoT load monitoring system of the smart grid, the non-intrusive load monitoring and identification (NILMI)
has become the research focus. However, the existing researches focus on the accuracy of load identification,
neglecting the effectiveness of data sampled, the distinction of load abstract feature representation, and the
reliability of load identification model. This paper proposes a novel algorithm framework of spatial–temporal
convolution neural network for NILMI, namely DST-CNN, to realize the fine-grained load identification. In
the DST-CNN framework, to ensure the accuracy and reliability of data usage, an signal enhancement method,
AM-PCA, is used. To enhance the distinction of load abstract feature representation, an extraction mechanism of
the spatial–temporal features is developed, which utilizes deep convolution networks and time-series recurrent
neural networks (RNN). To improve the accuracy and reliability of load identification model, a hierarchical
load classification mechanism is constructed, and the deep long short–term memory (LSTM) structure as the
classifier. A considerable amount of the high-frequent current signals are sampled to validation the performance
of the proposed method. The experimental results demonstrate the good generalization performance and
superiority for NILMI in IoT load monitoring system.
1. Introduction

With the rapid development of Internet technology, IoT technology
is widely used in the smart grid. In the IoT load monitoring system,
NILMI is a critical part of the load-side management of the ubiquitous
smart grid [1]. It could not only help enhance the operational efficiency
of the power grid side, but can alleviate the energy pressure, and
improve energy efficiency [2,3]. Especially, monitoring the current,
voltage and the power of the device can effectively analyze the power
consumption, the running situation of equipment, and the electricity
usage of people [4–7]. However, most of the existing approaches for
NILMI still need to be improved: the generalization of load identifica-
tion model, the accuracy and reliability of load identification, and the
distinction of load abstract feature representation. These can inhibit the
performance or impact the reliability of the NILMI. In this article, our
study mainly includes: improving the validity of load data sampled,
the capability of load characteristic representation, and the accuracy
of the fine-grained load identification without overlay scene. It is very
important for improving the dependability of IoT load monitoring
system in smart grid [8,9].
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A substantial amount of methods for NILMI have be presented in
the literature. These methods can be divided into two categories: the
mathematical optimization and the data driving [10,11]. The former
one is to solve the minimum of the combination results, namely the
difference is between the total power of the equipment combination
and the target loads value of a given set of equipment, and then in the
combination, the equipment included is the identification result. The
most of algorithms include the maximum likelihood function, the mean
value and variance based on statistical characteristics, etc [12,13]. In
the past few years, these methods have presented competitive perfor-
mance for NILMI, however, there are still some shortcomings: relying
on a great deal of prior knowledge; a huge amount of computations
are required to determine the model parameters; the early models have
some serious limitations, which can affect the reliability of IoT load
monitoring system [14].

In the present stage, the data-driven methods include Decision
Trees, k-Nearest Neighbor (kNN), Hidden Markov Models (HMM), and
Random Forest (RF), etc, which have the distinct advantages over the
previous methods of NILMI [15,16]. However, these methods require a
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570-8705/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.adhoc.2021.102643
Received 27 March 2021; Received in revised form 20 June 2021; Accepted 30 Jul
y 2021

http://www.elsevier.com/locate/adhoc
http://www.elsevier.com/locate/adhoc
mailto:penghao@buaa.edu.cn
https://doi.org/10.1016/j.adhoc.2021.102643
https://doi.org/10.1016/j.adhoc.2021.102643
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2021.102643&domain=pdf


Ad Hoc Networks 123 (2021) 102643Y. Jiang et al.

s
r

2

s
f
t
t
d
a
o
l
t

large number of offline data sets to train model; the parameter values
need to be adjusted frequently and to identify the best model, which
will increase the computational burden of the algorithm.

Recently, in view of the excellent feature representation ability,
the deep learning has been quickly applied in NILMI. In [17], the
author uses the convolution neural network (CNN) to extract the load
features of the different appliances in NILMI. In [18], the Bayesian
non-parametric learning-based approach and long short–term memory
(LSTM) neural networks are used for load identification. There are a
lot of the important information in the load features [19,20], so, many
researches focus on improving the capability of load feature represen-
tation [10]. In [21], by extracting the voltage–current (V–I) trajectory
of the household appliances as the load characterizes to realize the
load monitoring. In [8], the current-to-image is extracted as the load
feature from the residential appliance, and then the CNN is used as the
load classifier to realize load identification. However, the shapes of V–I
trajectory from a variety of appliances are similar, which significantly
reduces their ability for load discernment. To improve the method,
in [22], the author uses the short-time Fourier transform(STFT) and
CNN to produce an image-like representation of load; however, the
sampling error of load transient data is large, which requires the higher
precision of experimental instrument; the hyper-parameters of model
are set by engineering empirical operation, and it results in unstable
performance.

A great deal of literature show that the deep learning methods are
extraordinarily effective for improving the accuracy of load identifi-
cation. In [23], the deep neural network (DNN) model structure is
used to achieve the efficient monitoring and recognition of the running
state of the appliance in NILMI. Considering the load characteristics
are based on the time-series, some other literature utilize the LSTM
model to realize the load identification. In [24], the LSTM-RNN is
employed to enhance the accuracy of the single-load or multi-load
appliance classification. However, such methods have their limitations:
firstly, the generalization and global optimization of these methods
are insufficient; secondly, in the real world, the optimal classifier for
single-load identification is not for the multi-load; thirdly, increasing
the number of layers of neural network to improve the performance of
recognition model, which will lead to over-fitting of the model.

To address aforementioned problems, in this article, a novel algo-
rithm framework based on deep learning, namely DST-CNN, is pro-
posed. Our research goal is to present a high-reliability algorithm
framework to realize the high-level load feature representation and
the fine-grained accuracy of load identification for MILMI. In the
framework, an effective method of the signal enhancement, namely
the principal component analysis based on adjacency matrix (AM-
PCA), is used to reduce the error of data collected and ensure the
effectiveness of data. To improve the capability of load representation,
the time–frequency transformation technology based on the short-time
Fourier transform(STFT) is used. The DNN and time-series recursive
neural networks (RNN) are used to form a mechanism of spatial–
temporal feature extraction, and to obtain the high-quality load feature
mapping. The long short-term memory networks (LSTMs) method as
the load classifier is use to realize the fine-grained hierarchy of load
identification. The real-time experimental data sets are used to verify
the performance of the proposed model, and the results present the
significant reliability of the model for IoT load monitoring system.
Fig. 1 shows the framework of DST-CNN in the non-intrusive load
monitoring system of IoT.

From Fig. 1, the smart grid consists of the power side, grid side
and load side. The IoT load monitoring system is the key component of
the load side. The non-intrusive load monitoring system of IoT is used
to identify the load type and analyze the power consumption of the
equipment in real-time. The perception layer as the load data provider
can collect the current, voltage and active power signals of various
appliances, which can be collected by the smart meters installed at
the entrance to buildings in IoT. The DST-CNN is the heart of MILMI
algorithm.
2

The main contributions of this paper are as follows: l
(1) The paper uses an effective method of signal enhancement based
on AM-PCA to achieve de-noising of the raw data, and ensure the
validity and reliable of data sets.

(2) Utilizing STFT technology to realize time–frequency domain
transformation of the steady-state current; using the DNN model
to improve the ability of load spatial representation.

(3) Using a reconstructs RNN as the feature extractor of the load
spatial–temporal, which can provide the high-quality load fea-
tures mapping; the deep LSTM-RNN based on the time-series as
the load classifier, and the method can improve the performance
of load identification with the fine particle size.

The other chapters of this paper are arranged as follows. Section 2
reviews the related work. Section 3 introduces the algorithm design
details of DST-CNN model, and the evaluative criteria of the proposed
model. Section 4 presents and discusses the experimental setting of the
model, the experimental results, and the implementation of the model.
Section 5 concludes this article.

2. Related works

This chapter briefly reviews the learning of load event detection,
load feature extraction based on the frame frequency-domain image,
and the spatial-temporal representation based on deep learning.

2.1. Load event detection

In NILMI system, there are two types of load characteristic events:
the transient and the steady state [25]. The transient state last for
a short time and easily subject to large signal fluctuations, which
affects the accuracy of load event acquisition [26,27]. Considering the
types and the loads time-domain waveform of household appliances are
relatively regular, this paper obtains the high-frequency steady-state
load signal for the event detection.

As relatively straightforward parameters, the current and voltage
are monitored to describe the changes in running state of household
appliance, and they can be obtained by the simple technique [28]. In
general, the zero crossing detection (ZCD) is used to determine the
period of the data sampled [29,30]. When the running state of load is
stabilized after load start-up or state transition, the current is defined
as the steady-state current. By a lot of experimental measurements,
the stable-state of the most electrical appliances is determined after
appliances starting up or state transition for 2s. So the time-domain
waveform of the steady-state current is collected after appliance has
been working for 2s in the NILMI system [31]. One-cycle steady-state
current waveform is measured at a position where the steady-state
voltage waveform crosses zero and rises. (𝑗) and (𝑗 + 1) represent the
continuous sampling point-in-time [30]. Fig. 2 shows one-cycle steady-
state current and voltage waveform from micro-wave oven, where 𝑢(𝑗)
and 𝑢(𝑗 + 1) represent the voltage signal of the (𝑗) and (𝑗 + 1) moment
ampling point respectively, and the voltage waveform crosses zero and
ises.

.2. Load feature representation based on frame frequency-domain image

The feature extraction of load is the important component of NILMI
ystem. The ability of the abstract feature representation directly af-
ects the reliability of load identification. In general, the fast Fourier
ransform (FFT), wavelet analysis, and the shape characteristics of
he voltage–current (V–I) trajectory are used for identifying the single
evice with a switching mode power supply, but the anti-interference
bility and generality are poor [32]. The wavelet analysis can handle
verlapping events to a certain degree, however, it is not suitable for
ong-term operation of load equipment [33]. The voltage–current (V–I)
rajectories are widely used for abstracting the load feature to enhance

oad discrimination [6,34]. However, these methods hard to distinguish
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Fig. 1. The framework of DST-CNN for non-intrusive load monitoring and identification.
Fig. 2. The one-cycle of current and voltage waveform from micro-wave oven.

between the small-power devices with the similar V–I shape. Enlight-
ened by the remarkable effect of the frame division image in the image
recognition. In this paper, we select the frame frequency-domain image
as load characterization [35]. The short-time Fourier transform (STFT)
is employed to realize the time–frequency conversion of the steady-
state current waveform, and then to split the frequency image by frame.
The segmented frequency-images are as the pre-processed data for the
spatial–temporal feature extraction of load.

2.3. Deep spatial–temporal representation of load

Load feature learning has become the research focus in NILMI.
The accuracy of load feature representation affects the performance of
load monitoring and identification. Using deep learning technology for
load feature extraction aims at improving the quality of discriminative
feature. Artificial Neural Networks (ANNs) [36], convolutional neural
3

networks (CNNs) [37], Hidden Markov Model (HMM) [38], and the
support vector machines (SVM) [39], etc, have been widely used in
NILMI. These methods can simply abstract the essential characteristics
of the load, however, ignoring the load has the characteristic of the
time series. Long short–term memory networks (LSTMs) has good
performance in dealing with the long time dependencies of data, but
it has limited ability of the load feature extraction [40]. Especially, in
the multi-load feature recognition, the incomplete feature extraction
results in the identification inaccuracy. Meanwhile, the over-fitting and
non-convergence of loss function for identification are to be considered.

The traditional approach based on the time series, such as Au-
toregressive Integrated Moving Average (ARIMA) [41,42]. It can well
represent the connection between the load sampling data points at
a certain moment, however, in the process of modeling, this method
has large fluctuations, strong uncertainty and the poor stability of
the model. The spatial–temporal representation learning is attractive
method to tackle the feature extraction problem based on time series.
In [43], utilizing the spatial–temporal representation to realize the
effective and full captures for the features time correlations, mean-
while the method can present the good estimated performance for
the events forecast. In [44], a simple spatial–temporal pattern for
energy decomposition is used. However, considering the complexity
of time series data sampled in multivariate load, the performance of
the model still need to be improved. As the network scale becomes
larger, the problem of model optimization can be difficult to solve.
In this paper, the deep spatial–temporal representation is employed to
abstract the high-quality load features, and to realize the fine-grained
load identification.

3. Deep spatial–temporal convolution neural network for load
identification

In this section, the algorithm framework of DST-CNN model is
proposed to address the following research problems: the effectiveness
of sampled data, the incomplete load characteristic representation, and
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Fig. 3. Block diagram of the developed DST-CNN model.

the accuracy and reliability of load identification. The overview of
model is shown in Fig. 3. We mainly introduce the load event detection
and data acquisition, load feature discrimination based on the time–
frequency transformation, spatial feature extraction mechanism based
on DNN, and spatial–temporal feature extraction mechanism based on
LSTM-RNN.

3.1. The key design steps of the DST-CNN model

In our work, the design of the DST-CNN model includes 5 steps.
In step 1, the experimental data of the steady-state current and voltage
signals are sampled from the smart electricity meters installed in house-
hold. In step 2, the STFT is used to realize the time–frequency transfor-
mation of current collected; in this process, the time domain waveform
of the steady-state current to be transformed into the frequency–domain
images as the abstract characteristics of load. In step 3, the concept
of frame is introduced to the frequency-domain images divided; an
integral frequency-domain image is divided into many single frame
images. In step 4, each single frame image as the input vector of the
DNN is inputted into DNN model for convolution and pooling opera-
tions, finally to generate the spatial features sequence of load features
mapping. In step 5, each spatial feature is inputted into the temporal
recursive neural network respectively; the spatial–temporal features
mapping are generated for the fine-grained type identification of loads,
and to achieve the hierarchical classification of load. The detailed
design of each part of the model and the meaning of parameters will
be introduced later in this section.

3.2. Load event detection and data acquisition

In this paper, compared to the low-frequency sampled data, the
high-frequency sampled data can provide the sufficient load features in-
formation, which is very important to improve the capability of features
representation learning in NILMI. [45]. The one-cycle of load current
signal is determined by the ZCD of voltage, which as a simple and
effective way has been used in some literature. [46,47]. This process
is shown in Algorithm 1. When the steady-state voltage waveform at
least two crosses zero and rises, and the current signal corresponding
to the voltage signal between the two zero crossings are collected [30].
4

Algorithm 1: Load event detection
Input: 𝑈, 𝐼 , Samplying points size 𝑀 ;

Zero crossings: voltage 𝐶𝑧𝑢, current 𝐶𝑧𝑖;
Sampling size of one complete cycle 𝐶𝑇 ;

Output:𝑖𝑚, 𝑢𝑚, (𝑚 ∈ 𝑀);
Initialized data: 𝑖0, 𝑢0
//Detect the voltage zero-crossings;

Obtain the current zero-crossings;
for 𝑚 = 2 to 𝑙𝑒𝑛(𝐶𝑧𝑢) − 2 do

𝐶𝑇𝑚 = 𝐶𝑧𝑢[(𝑚 + 2)] − 𝐶𝑧𝑢[(𝑚)];
𝑢𝑚 = 𝑈 [𝐶𝑧𝑢(𝑚) ∶ 𝐶𝑧𝑢(𝑚 + 2)];
𝑖𝑚 = 𝐼[𝐶𝑧𝑢(𝑚) ∶ 𝐶𝑧𝑢(𝑚 + 2)];
if 𝐶𝑇𝑚 = 𝐶𝑇 and 𝐶𝑧𝑖 ≥ 2 and 𝑙𝑒𝑛(𝑖𝑚) = 𝐶𝑇 then

break;
endif

endfor

In the paper, the four common kinds of household appliances were
selected such as refrigerator (Refrig), water heater (WH), induction
cooker (Inco), and microwave oven (Micro) for load recognition.

3.3. Data pre-processing with AM-PCA

In the real work, the inevitable instrumentation error does exist, so
a signal de-noising method, the principal component analysis based on
adjacent matrix (AM-PCA) is employed. The method utilizes a neighbor
current waveform signal to amend the error sampling point for reducing
error in the sampling waveform signal [48]. The similar methods have
been used in other fields [49]. Fig. 4 shows the process flow diagram
of AM-PCA.

The mathematical expression of adjacent matrix is formulated as

𝐷 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑1(𝑖−1) 𝑑1(𝑖) 𝑑1(𝑖+1)
𝑑2(𝑖−1) 𝑑2(𝑖) 𝑑2(𝑖+1)
⋮ ⋮ ⋮

𝑑𝑁(𝑖−1) 𝑑𝑁(𝑖) 𝑑𝑁(𝑖+1)

⎤

⎥

⎥

⎥

⎥

⎦

(1)

where, the (𝑖 − 1), (𝑖), and (𝑖 + 1) are a continuous time series. The
𝑑𝑛𝑖 (𝑛 ∈ 𝑁) represents the 𝑛th sample of 𝑖th sampling period, and the
sampling point 𝑑𝑛𝑖−1 and 𝑑𝑛𝑖+1 adjacent to it. The 𝑑(𝑖 − 1), 𝑑(𝑖), and
𝑑(𝑖+1) are a sequence of sample points at a continuous time. The matrix
𝐷 represents a current signal matrix. The number of sample in each
sampling cycle is 𝑁 .

In Fig. 4, the process of AM-PCA is that three adjacent current
signals sequences, 𝑑(𝑖 − 1), 𝑑(𝑖), and 𝑑(𝑖 + 1) are selected, and then
by extracting the principal component of 𝑑(𝑖 − 1) and 𝑑(𝑖 + 1) to en-
hance the signals sequences (𝑑1𝑖 , 𝑑

2
𝑖 ,… , 𝑑𝑛𝑖 ) at 𝑖th moment. The singular

value decomposition (SVD) is used to optimize the performance of
PCA algorithm. 𝑑𝑛 = 𝑑𝑛 −

1
𝑚
∑𝑚

𝑗=1 𝑑𝑗 represents the decentralization of
the sampled sequences. Calculating the principal component of the 𝑛′

dimension of the sample 𝑑𝑛𝑖 is equivalent to calculate the eigenvector
matrix 𝑊 of the covariance matrix 𝑋𝑋𝑇 of the sample set, which is
correspond to the first 𝑛′ eigenvalues. Finally, each sample 𝑑𝑛𝑖−1, 𝑑𝑛𝑖 ,
and 𝑑𝑛𝑖+1 will be transformed as 𝑧𝑛𝑖−1 = 𝑊 𝑇 𝑑𝑛𝑖−1, 𝑧𝑛𝑖 = 𝑊 𝑇 𝑑𝑛𝑖 , and
𝑧𝑛𝑖+1 = 𝑊 𝑇 𝑑𝑛𝑖+1; the updated sample set 𝐷′ = (𝑧1, 𝑧2,… , 𝑧𝑛) are obtained.
The method can be used for detecting the error sampling points.

3.4. Load feature discrimination with STFT

In general, the features of load signals from multi-sensor system are
high dimensional, which contains some redundant and noisy. The sig-
nal dimension reduction can improve data efficiency. To avoid the loss
of the majority of the current characteristics in dimension reduction
and ensure the reliability of the load characteristics extracted, the short-
time Fourier transform (STFT) is employed. As a practical technology
for speech signal processing, STFT uses a distribution class of time and
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Fig. 4. The process flow diagram of AM-PCA.
frequency to specify the complex amplitude of any signal varies with
time and frequency [50]. The STFT can be defined as below:

𝑆𝑇𝐹𝑇𝑧(𝑡, 𝑓 ) = ∫

∞

−∞
[𝑧(𝑢)𝑔∗(𝑢 − 𝑡)]𝑒−𝑗2𝜋𝑓𝑢d𝑢 (2)

where 𝑧(𝑢) represents the source signal, 𝑔∗(𝑡) represents the window
function, 𝑡 represents time. The function is described as the STFT of
signal 𝑧(𝑢) at 𝑡 moment, which is the Fourier transform of the signal 𝑧(𝑢)
multiplied by an analysis window 𝑔∗(𝑢−𝑡) that is the center of 𝑡 moment.
Herein, 𝑧(𝑢) represents the time-domain waveform of the steady-state
current. 𝑆𝑇𝐹𝑇𝑧(𝑡, 𝑓 ) represents the frequency spectrum at 𝑡 moment.

Fig. 5 shows the time-domain waveform of the steady-state current
signal from 4 different types of appliances, and Fig. 6 shows the
converted frequency-domain images of the steady-state current signal.
From Fig. 6, the frequency-domain images of the different appliances
can represent the different load characteristics of the appliances.

3.5. Spatial features extraction of DST-CNN model

As the key component of DST-CNN model, DNN is employed to
realize the spatial features extraction of the household appliances load.
Fig. 7 demonstrates the schematic diagram of the load spatial features
extracted. Briefly, the algorithm structure of DNN mainly includes two
mainly parts: (1) features extractin from the frame image; (2) the
construction of DNN structure for the spatial features extraction.

Step 1: feature extraction based on DNN. After the frequency-
domain images of load have been obtained, the complete
frequency-domain image of load is divided into some smaller frame
images, and then form a sequence of single frame images. In [51], the
result of the experiment confirms that a short-time property of frame
feature is better than a long-time distributional frame pattern. The
process is as follows: we sample a frequency-domain image of load, the
sequence 𝑋 with 𝑀 frames; by this way, the sequence frame is defined
as 𝑅 =

∑𝑀
𝑟=1 𝑅𝑖, where, 𝑅𝑖 is a frame, the value of 𝑖 is from 1 to 𝑀 . The

each frame 𝑅𝑖 as a feature vector is inputted to the first convolution
layer of DNN, and then through the convolutional kernel layer to form
the features mapping. Each image of the sequence of frame images has
the temporal characteristics, and each frame image of the sequence
frame images as a highly discriminative feature.

Step 2: construction of DNN structure for spatial features ex-
traction. In this paper, to form the spatial feature representations of
load, a deep convolution neural network (DNN) is proposed. The struc-
ture of DNN includes the convolution network layer, the max-pooling
5

layer, and the full-connection network layer. The number of parameters
in each part is set to nine, six, and four respectively. Between the
convolution layer and maxi-pooling layer, we select rectified linear
unit (ReLU) as the activation function. ReLU can boost the nonlinearity
of function to avoid gradient descent. The expression of ReLU is as
follows:

ReLU(𝑥𝑖) = max(0, 𝑥𝑖) (3)

The feature map of the new convolution layers could be calculated as
{

𝐶𝑛
𝑖 = 𝜎(

∑

𝑠∈𝑀𝑖(𝑛−1)

∑

(𝑝,𝑞)∈𝐾(𝑛) 𝑤𝑠
𝑖𝑠(𝑝,𝑞)𝑥

(𝑛−1)
𝑠 (𝑐 + 𝑝, 𝑟 + 𝑞) + 𝑏(𝑛)𝑖 )

𝐾𝑛 = [(𝑝, 𝑞) ∈ 𝑁2
|0 < 𝑝 < 𝑘𝑤, 0 < 𝑞 < 𝑘ℎ]

(4)

where, 𝐾 (𝑛) represents convolution kernel, 𝑛 indicates the number of the
CNN layer, the size of convolution kernel is 𝐾𝑤 ×𝐾ℎ, the height is 𝐾ℎ,
and the weight is 𝐾𝑤; 𝑏(𝑛)𝑖 is the bias of the 𝑖th characteristic mapping
in convolution network layers, 𝑤𝑠

𝑖𝑠(𝑛−1) is the weight of the neuron of
the 𝑖th feature mapping in convolution layers, 𝑠 is the previous state,
the parameters 𝑐 and 𝑟 are the column and row of the input image
respectively. The function 𝜎 represents the activation function ReLU.
After the convolution layers, the features of image are inputted in the
max-pooling, and to reduce overfitting. This detailed process can be
formulated as:

𝑌 𝑛
𝑖 = 𝑑𝑜𝑤𝑛(𝐶𝑛

𝑖 ) (5)

The 𝑑𝑜𝑤𝑛(∙) represents the down-sampling function, 𝐶𝑛
𝑖 indicates

the features mapping. The max-pooling layer can reconstitute the new
features mapping with the max value of a filter 𝑛× 𝑛. In this process, if
the inputed frame image is 𝑟𝑖(𝑥, 𝑦), after it through the first convolution
kernel 𝑘𝑖(𝑝, 𝑞) with the size 𝑎 × 𝑏, the corresponding feature mapping
is 𝑚𝑖(𝑥, 𝑦), which can achieved the calculation by Eq. (4). After the
convolution layer, the feature mapping 𝑚𝑖(𝑥, 𝑦) will be inputted into
the max-pooling, and the size of the feature mapping transfers into
𝑚′
𝑖(𝑥, 𝑦) by Eq. (5), and then the features are extracted and fed into a

fully-connected layer. Finally, the spatial features mapping are formed,
𝑠𝑚′

𝑖(𝑥, 𝑦), which is one-dimensional array, which will as the input layers
are fed into the LSTM-RNN model.

3.6. Spatial–temporal feature extraction of DST-CNN model

In this section, we present a LSTM-RNN model to form the spatial–
temporal feature mapping of the electricity load for the fine-grained
load identification. The structure of LSTM-RNN model is shown in
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Fig. 5. The time-domain steady-current waveform of 4 different appliances.(a1) Refrigerator. (b1) Water Heater. (c1) Micro-wave Oven.(d1) Induction Cooker.
Fig. 6. The frequency-domain images of 4 different appliances. (a2) Refrigerator. (b2) Water Heater. (c2) Micro-wave Oven. (d2) Induction Cooker.
Fig. 8. LSTM-RNN is used to solve the long dependency problem of
network. In the paper, since the load has the characteristics of time
series, LSTMs is used for the spatial–temporal feature extraction of the
load. The detailed structure of the LSTMs is presented in Fig. 9.

The core of LSTMs model includes an input gate, a forget gate,
and an output gate. The superscript 𝑐 of each vector represents the
neuron, the subscript 𝑛 represents time, 𝑦(𝑛) represents the 𝑛 moment
input layer, and ℎ(𝑛−1) represents the (𝑛−1) moment hidden layer [52].
The vector 𝑎𝑐(𝑛) is in the 𝑛 moment, the current state of LSTMs, and the
center of each neuron has been linearly activated. Forget gate 𝑓 𝑐

(𝑛) is
the first step in the memory unit of LSTMs, which selectively delete
certain information of state. In the moment, 𝑓 𝑐

(𝑛) is used to controlled
information of the input layer, and ℎ𝑐 is the previous moment of the
6

(𝑛−1)
hidden layer, and they determine the input of 𝑓 𝑐
(𝑛). The expression of

𝑓 𝑐
(𝑛) can be formulated as follows:

𝑓 𝑐
(𝑛) = 𝜎(𝑊𝑓 ⋅ [ℎ𝑐(𝑛−1), 𝑦

𝑐
(𝑛)] + 𝑏𝑓 ) (6)

The input gate and input node. The 𝑖𝑐(𝑛) represents the input gate of
the LSTMs, and it is a sigmoid function layer to decide which value will
be updated. The 𝑔𝑐(𝑛) represent the input node, and it is a tanh function
layer to create the candidate state vector 𝑎′𝑐(𝑛) states. The 𝑖𝑐(𝑛) is related
to ℎ𝑐(𝑛−1) and 𝑦𝑐(𝑛). The calculation formula of 𝑖𝑐(𝑛) is defined as

𝑖𝑐 = 𝜎(𝑊 ⋅ [ℎ𝑐 , 𝑦𝑐 ] + 𝑏 ) (7)
(𝑛) 𝑖 (𝑛−1) (𝑛) 𝑖
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Fig. 7. The schematic diagram of the load spatial features extracted.
Fig. 8. The structure of LSTM-RNN model.

Fig. 9. The memory unit structure of LSTM.

The candidate state vectors 𝑎′𝑐(𝑛) is defined as follows:

𝑎′𝑐(𝑛) = tanh(𝑊𝑎 ⋅ [ℎ𝑐(𝑛−1), 𝑦
𝑐
(𝑛)] + 𝑏𝑎) (8)

The input node 𝑔𝑐(𝑛) is defined as

𝑔𝑐(𝑛) = tanh(𝑊𝑔 ⋅ [ℎ𝑐(𝑛−1), 𝑦
𝑐
(𝑛)] + 𝑏𝑔) (9)

The update of the current status 𝑎𝑐(𝑛) is represented as

𝑎𝑐(𝑛) = 𝑔𝑐(𝑛) ∗ 𝑖𝑐(𝑛) + 𝑎𝑐(𝑛−1) ∗ 𝑓 𝑐
(𝑛) (10)

The 𝑜𝑐(𝑛) represents an output gate of the model, and it is used
to determine what information to be outputted. The internal state 𝑎𝑐

utilizes a tanh layer to obtain the value of the state 𝑎𝑐 , and the value
7

(𝑛)
is between −1 and 1, then multiply by the output of sigmoid function
layer to get the rest of the state. The detail description of 𝑜𝑐(𝑛) and ℎ𝑐(𝑛)
are given as:

𝑜𝑐(𝑛) = 𝜎(𝑊𝑜 ⋅ [ℎ𝑐(𝑛−1), 𝑦
𝑐
(𝑛)] + 𝑏𝑜) (11)

ℎ𝑐(𝑛) = tanh(𝑎𝑐(𝑛)) ∗ 𝑜𝑐(𝑛) (12)

where 𝑤 and 𝑏 respectively represent the layer weight value and the
offset value.

The output layer of LSTMs uses the softmax to realize the hierar-
chical classification of the load, and the softmax can easily implement
the multiple types of nonlinear classification. The detailed process is
described as follows:

𝑆(𝑧)𝑖 =
𝑒𝑧𝑖

∑𝑀
𝑗=1 𝑒

𝑧𝑗
(13)

where, 𝑧 is the output of the full-connected layer, and ∑𝑀
𝑗=1 𝑒

𝑧𝑗 rep-
resents the normalizes the output probabilities. The softmax turns the
output of LSTM into a probability distribution, and the cross-entropy
is used to calculate the distance between the predicted probability
distribution and the true data probability distribution. Loss of the
cross-entropy is defined as

𝐿𝑐𝑙𝑎𝑠𝑠 = −
𝑁
∑

𝑖=1
𝑦𝑖𝑙𝑜𝑔𝑆𝑖 (14)

In the paper, the DST-CNN model is employed to realize the fine-
grained load identification in NILM system. The whole process of
DST-CNN is shown in algorithm 2.

Algorithm 2: The whole process of DST-CNN
Input: Initial data[𝐼0, 𝐼1,… , 𝐼(𝑡−1)];

Pre-processing data: [𝐼 ′

0, 𝐼
′

1,… , 𝐼 ′

(𝑡−1)];
Feature data: [𝐹 ′

0 , 𝐹
′

1 ,… , 𝐹 ′

(𝑡−1)];
Number of feature:N;Number of epochs: NE; Batches: NB.

Output: The DST-CNN model M
// Train the model

for 𝑛𝑒 = 1, 2,… , 𝑁𝐸 do
for 𝑛𝑏 = 1, 2,… , 𝑁𝐵 do

𝑧𝑖 ← Eqs. (4) and (5);
𝑓(𝑛) ← Eq. (6);
𝑖(𝑛) ← Eq. (7);
𝑔(𝑛) ← Eq. (9);
𝑜(𝑛) ← Eq. (11);
ℎ(𝑛) ← Eq. (12);
𝑠(𝑧)𝑖 ← Eq. (13);
𝐿𝑐𝑙𝑎𝑠𝑠 ← Eq. (14);

end
end
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3.7. Evaluation criterion of DST-CNN model

In our experiment, some practical evaluation criteria are employed
for the performance of the proposed model, namely the model accu-
racy, Matthews correlation coefficient (MCC), Zero-loss score (ZL), and
Macro − 𝐹1. The average value of all the precision is Macro − 𝐹1 score,
he formula is describe as

acro − 𝐹1 =
𝑖
𝑀

𝑀
∑

𝑚=1
𝐹1(𝑚) (15)

where, the number of appliances is 𝑀 , 𝐹1(𝑚) is a weighted average of
model precision and recall rates of 𝑚th appliance, the maximum is 1,
and the minimum is 0. The 𝐹1(𝑚) is defined as

𝐹1(𝑚) = 2 ⋅
𝑝 ⋅ 𝑟
𝑝 + 𝑟

(16)

where 𝑝 and 𝑟 represent the precision and the recall respectively.
Zero-loss score (ZL) represents the 0_1 loss of classification, and the

alculating formula is deduced as

0−1(𝑥𝑘, 𝑥𝑘) = 1(𝑥𝑘 ≠ 𝑥𝑘) (17)

where assuming 𝑥𝑘 is the predictions of 𝑘th appliance, 𝑥𝑘 is the true
alue of 𝑘th appliance.

MCC is called a balanced metric, and it can be used for classes
ith different sizes; MCC is a relational value between −1 and 1. If

he correlation coefficient is -1, and illustrates a complete inconsistency
etween prediction and observation; if the value is 1, and illustrates a
erfect prediction, 0 shows an random prediction. MCC can be defined
s follows:

𝐶𝐶 =
𝑡𝑝𝑚 × 𝑡𝑛𝑚 − 𝑓𝑝𝑚 × 𝑓𝑛𝑚

√

(𝑡𝑝𝑚 + 𝑓𝑝𝑚)(𝑡𝑝𝑚 + 𝑓𝑛𝑚)(𝑡𝑛𝑚 + 𝑓𝑝𝑚)(𝑡𝑛𝑚 + 𝑓𝑛𝑚)
(18)

In general, 𝑡𝑝𝑚, 𝑡𝑛𝑚, 𝑓𝑝𝑚, and 𝑓𝑛𝑚 represent the true positive, true
negative, false positive, and false negative of 𝑚th class respectively.

4. Experimental setups

This chapter presents that the real measured datasets are utilized
to train, test, and validate the proposed method. For better illustration
about the performance advantage of the proposed method, three other
typical methods of load recognition are introduced. The simulation
environment configuration includes Python 3.5, the PyTorch 1.0, and
the NVIDIA CUDA 9.0. Python 3.5 is used to program for the proposed
algorithm implementation.

4.1. Experiment datasets

In this paper, the experimental data acquisition are from 50 build-
ings and the data collecting period is between 2018 and 2020. The
time spent on using household appliances of one day is 24 h (sampling
frequency 𝑓𝑠 = 130). The data mainly includes four types of the
most representative household appliances, namely refrigerator (Refrig),
water heater (WH), microwave oven (Micro), and induction cooker
(Inco). These data contain the steady-state voltage, current and active
power of the high-frequency load, which can provide the sufficient
experimental data sets for NILMI.

There are two key reasons to explain why we select the above four
kinds of electrical appliances to experiment. Firstly, the above selected
experimental appliances are all the representative household appli-
ances, and they are indispensable in modern life. Secondly, the changes
in running state of those appliances are from simple to complex forms,
and the variable running state samples are good for training models
under different conditions. Thirdly, considering the limited space of the
paper, the experiment only uses some common load combinations.

We use the relatively small data set No.1 building, No.2 building
and No.3 building for experiment. There are 5 × 109 data samples
8

collected over the course of a year. These data samples consist of two
parts: the status data of the four kinds of electrical appliances working
alone; the status data of the simultaneous running of two or more
appliances. The sampling numbers of each type of appliances are 107

for training and testing model, which can provide the sufficient single
and multiple operating waveforms data.

To ensure the effectiveness of the acquired dataset, this experiment
takes the average of the three measurements as the final current value.
Since existing the fluctuations of measuring signal, noise, and the
abnormal spikes in sampling data, the AM-PCA is employed to complete
the data pre-processing, which has been introduced in the previous
section. In the paper, the 80% datasets are selected to train the model
and the rest 20% to test the model.

4.2. The proposed model training and testing

For better illustration about the advantageous performance of the
proposed method, the other three typical load recognition methods,
namely KNN, CNN, and LSTM, are introduced to present the robustness
of our method in the paper. The parameters of DST-CNN model are set
as the number of the hidden layer blocks is 5, each block consists of
128 filters, and the filter size is 3. The pooling size and the pooling
stride are all set to 2. ReLU is selected as the activation function, and
the value of the dropout probability is set to 0.5. The size of mini-batch
is set to 512, the Adam optimizer is generally preferred and learning
rate is set to 0.002. The number of epoch is set to 200 with an early
stopping criterion to prevent over-fitting.

In the experiment, we use the datasets from three buildings men-
tioned above to discuss the experimental results of our proposed
method. We performed 5-fold validation on each of the datasets. The
accuracy of training process are reported in Fig. 10, where the best
results are shown. From Fig. 10, among the training process of above
4 models, the accuracy of DST-CNN method is the highest, and the
mean accuracy is 91.64%, which is 9.40% higher than the second-
best ranked CNN. The CNN method has advantages for the image
recognition, but for the recognition of load feature image based on
temporal characteristics, the accuracy is relatively low. The mean
accuracy of KNN and LSTM is 70.59% and 68.49%, respectively. The
LSTM is the lowest in four methods.

To further to analyze the performance of the proposed model, we
used three testing dataset from three buildings to test the four model re-
spectively, and we performed 3-fold validation on each of the datasets.
By calculating the average value of the three verification results as the
final results, the testing results are presented and discussed in Fig. 11.
The results show that the testing accuracy of DST-CNN method is better
than the other 3 models on the different testing datasets.

4.3. Evaluation criteria for the proposed model

To evaluate the performance of the proposed model, the single-
label and the multi-label load identification are considered for our
experiment. The Macro − 𝐹1 scores, ZL scores, and MCC are employed
o evaluate the four types of load identification methods in the single-
abel and the multi-label experiment. The experimental datasets are
rom the three different buildings, each dataset includes the single and
he combined appliances, which are Refrig, WH, Micro, Inco, Re+WH,
e+Micro, Re+Inco, Re+WH+Inco, Re+WH+Micro, Re+Micro+Inco,
e+WH +Micro+Inco.

In Figs. 12 and 13, we use the three datasets from the different
uildings to verify the Macro−𝐹1 scores of the four method. It is obvious
hat the DST-CNN method is better than the other three methods under
ll labeling conditions. In Fig. 12, it mainly demonstrates the Macro−𝐹1

scores of the single load identification test, and the Macro − 𝐹1 scores
of DST-CNN method are the best. The CNN method ranks the second,
and better than the KNN and LSTM methods. In view of the time-series
characteristics of the load, the results clearly illustrate that the KNN
and LSTM methods are inferior to DST-CNN and CNN methods. Fig. 13
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Fig. 10. The accuracy of training process.
Fig. 11. The accuracy of testing process.

Fig. 12. Macro − 𝐹1 scores of the single load identification test.
9

Fig. 13. Macro − 𝐹1 scores of the multi-load identification test.

presents the Macro−𝐹1 scores of the multi-load identification test, and
the Macro−𝐹1 scores of DST-CNN method is much better than the other
three methods. In terms of the time series characteristic of load, the
CNN method has no advantage in the multi-load recognizing. These
results obviously indicate that the DST-CNN method is effective for the
load signal identification of NILMI under all labeling conditions.

The ZL scores and the MCC as the performance indicators are also
used to evaluate the proposed model with the four methods and the
two different datasets from two buildings (No.1 buildings and No.2
buildings). In Tables 1, 2, and 3, the average scores and the standard
deviations of experimental are clearly demonstrated, and the bold
scores represent the best results. Table 1 presents the results of four
methods on the single load datasets, which are from the No. 1 building
and No. 2 building respectively. The results show that the ZL scores
of DST-CNN method are less than the other three methods and the
MCC scores are higher than the other three methods, indicating that
the identification performance of DST-CNN method in the single load
is better. However, the MCC value of CNN method is the highest for
refrigerator identification, illuminating that CNN is an effective method
for the single devices identification, and the case rarely occurs in the
combinatorial appliances identification.

The ZL scores and the MCC scores of the multi-labels experiment
of the appliance identification can more deeply assess the proposed
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Table 1
The key evaluation indexes of single appliances.

Index Method No. 1 building No. 2 building

Refrig WH Micro Inco Refrig WH Micro Inco

ZL

DST-CNN 10.47 𝟏.𝟏𝟖 𝟔.𝟓𝟒 𝟔.𝟐𝟑 9.11 𝟓.𝟑𝟐 𝟓.𝟑𝟎 𝟓.𝟗𝟕
±0.13 ±𝟎.𝟎𝟐𝟏 ±𝟎.𝟏𝟔𝟏 ±𝟎.𝟏𝟕𝟑 ±0.112 ±𝟎.𝟏𝟐𝟒 ±𝟎.𝟎𝟗𝟏 ±𝟎.𝟎𝟏𝟑

KNN 27.01 24.45 18.99 19.01 21.13 25.14 19.13 19.18
±0.062 ±0.038 ±0.012 ±0.043 ±0.052 ±0.089 ±0.045 ±0.012

CNN 𝟔.𝟑𝟎 15.54 13.47 14.50 𝟔.𝟐𝟕 9.46 10.43 11.49
±𝟎.𝟎𝟑𝟔 ±0.012 ±0.031 ±0.057 ±𝟎.𝟎𝟏𝟒 ±0.011 ±0.023 ±0.009

LSTM 27.88 26.73 28.05 26.52 27.49 28.17 26.41 25.72
±0.045 ±0.034 ±0.052 ±0.018 ±0.023 ±0.019 ±0.015 ±0.016

MCC

DST-CNN 0.88 𝟎.𝟗𝟗 𝟎.𝟗𝟐 𝟎.𝟗𝟑 0.90 𝟎.𝟗𝟓 𝟎.𝟗𝟓 𝟎.𝟗𝟒
±0.035 ±𝟎.𝟎𝟏𝟒 ±𝟎.𝟎𝟐𝟐 ±𝟎.𝟎𝟏𝟏 ±0.014 ±𝟎.𝟎𝟏𝟒 ±𝟎.𝟎𝟐𝟏 ±𝟎.𝟎𝟎𝟗

KNN 0.70 0.74 0.79 0.78 0.77 0.73 0.78 0.78
±0.025 ±0.021 ±0.031 ±0.014 ±0.017 ±0.016 ±0.025 ±0.021

CNN 𝟎.𝟗𝟑 0.82 0.85 0.84 𝟎.𝟗𝟑 0.89 0.88 0.87
±𝟎.𝟎𝟏𝟎 ±0.009 ±0.021 ±0.045 ±𝟎.𝟎𝟑𝟖 ±0.051 ±0.047 ±0.031

LSTM 0.69 0.70 0.68 0.70 0.69 0.66 0.71 0.72
±0.023 ±0.031 ±0.015 ±0.014 ±0.053 ±0.063 ±0.062 ±0.013
Table 2
The key evaluation indexes of combined appliances for No. 1 building.

Index Method Refrig
+WH

Refrig
+ Micro

Refrig
+ Inco

Refrig
+ WH
+ Micro

Refrig
+ WH
+ Inco

Refrig
+Micro
+Inco

Refrig
+ WH
+ Micro
+ Inco

ZL

DST-CNN 𝟏.𝟏𝟕 𝟔.𝟐𝟓 10.51 𝟔.𝟐𝟒 𝟎.𝟕𝟕 𝟏.𝟖𝟔 𝟔.𝟐𝟔
±𝟎.𝟎𝟐𝟑 ±𝟎.𝟎𝟏𝟗 ±0.021 ±𝟎.𝟎𝟑𝟏 ±𝟎.𝟎𝟐𝟔 ±𝟎.𝟎𝟏𝟕 ±𝟎.𝟎𝟏𝟒

KNN 19.11 18.85 24.47 18.94 19.16 24.50 16.15
±0.021 ±0.013 ±0.011 ±0.022 ±0.021 ±0.015 ±0.012

CNN 9.15 13.41 𝟔.𝟓𝟕 13.45 15.01 11.42 13.47
±0.017 ±0.003 ±𝟎.𝟎𝟎𝟏 ±0.012 ±0.032 ±0.041 ±0.027

LSTM 24.15 25.12 24.23 22.90 23.92 27.78 27.12
±0.025 ±0.021 ±0.013 ±0.021 ±0.019 ±0.012 ±0.047

MCC

DST-CNN 𝟎.𝟗𝟗 𝟎.𝟗𝟑 0.88 𝟎.𝟗𝟑 𝟏.𝟎𝟎 𝟎.𝟗𝟖 𝟎.𝟗𝟑
±𝟎.𝟎𝟏𝟔 ±𝟎.𝟎𝟏𝟏 ±0.015 ±𝟎.𝟎𝟐𝟑 ±𝟎.𝟎𝟐𝟐 ±𝟎.𝟎𝟒𝟑 ±𝟎.𝟎𝟏𝟐

KNN 0.78 0.79 0.74 0.79 0.78 0.74 0.81
±0.011 ±0.021 ±0.019 ±0.027 ±0.031 ±0.029 ±0.025

CNN 0.90 0.85 𝟎.𝟗𝟐 0.85 0.83 0.87 0.85
±0.016 ±0.012 ±𝟎.𝟎𝟏𝟑 ±0.014 ±0.020 ±0.017 ±0.021

LSTM 0.74 0.73 0.74 0.76 0.75 0.69 0.69
±0.011 ±0.013 ±0.017 ±0.011 ±0.014 ±0.012 ±0.023
Table 3
The key evaluation indexes of combined appliances for No. 2 building.

Index Method Refrig
+WH

Refrig
+Micro

Refrig
+Inco

Refrig
+WH
+Micro

Refrig
+WH
+Inco

Refrig
+Micro
+Inco

Refrig
+WH
+Micro
+Inco

ZL

DST-CNN 𝟎.𝟕𝟑 𝟎.𝟑𝟐 𝟐.𝟒𝟕 𝟓.𝟑𝟐 𝟎.𝟗𝟗 𝟏.𝟎𝟏 𝟐.𝟑𝟏
±𝟎.𝟎𝟖𝟏 ±𝟎.𝟎𝟕𝟓 ±𝟎.𝟎𝟔𝟒 ±𝟎.𝟎𝟓𝟐 ±𝟎.𝟎𝟒𝟕 ±𝟎.𝟎𝟓𝟐 ±𝟎.𝟎𝟑𝟕

KNN 25.96 26.61 25.21 23.91 23.87 26.10 23.89
±0.037 ±0.051 ±0.031 ±0.035 ±0.029 ±0.024 ±0.041

CNN 13.71 13.56 11.39 13.59 14.72 15.04 10.14
±0.041 ±0.032 ±0.054 ±0.025 ±0.022 ±0.021 ±0.043

LSTM 33.43 29.35 28.57 27.88 33.03 27.88 26.41
±0.049 ±0.041 ±0.035 ±0.036 ±0.037 ±0.038 ±0.031

MCC

DST-CNN 𝟏.𝟎𝟎 𝟏.𝟎𝟎 𝟎.𝟗𝟕 𝟎.𝟗𝟓 𝟏.𝟎𝟎 𝟏.𝟎𝟎 𝟎.𝟗𝟖
±𝟎.𝟎𝟕𝟓 ±𝟎.𝟎𝟏𝟒 ±𝟎.𝟎𝟐𝟕 ±𝟎.𝟎𝟑𝟕 ±𝟎.𝟎𝟒𝟐 ±𝟎.𝟎𝟏𝟑 ±𝟎.𝟎𝟑𝟓

KNN 0.72 0.71 0.73 0.75 0.75 0.71 0.75
±0.083 ±0.041 ±0.015 ±0.034 ±0.032 ±0.021 ±0.028

CNN 0.85 0.85 0.87 0.85 0.84 0.83 0.88
±0.131 ±0.111 ±0.105 ±0.087 ±0.073 ±0.042 ±0.065

LSTM 0.63 0.65 0.66 0.69 0.64 0.69 0.71
±0.111 ±0.017 ±0.125 ±0.097 ±0.067 ±0.034 ±0.054
methods. Tables 2 and 3 show the comparison results of the evaluation
indexes with four methods in combined electrical appliance identifi-
cation of two buildings (No. 1 building and No. 2 building). From
the results, in multi-load identification, the DST-CNN method has the
significant performance advantage.
10
Computation time is also an indicator to evaluate the performance
of the model. In the paper, the training data set from the No.1 building
includes 208901 samples are used to verify the training time of model.
The training time on the data set of different sizes (20%–80%)is used.
The training time of the different methods is presented in Fig. 14. When
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Fig. 14. Comparison of training time on the different size of data set.

the size of the data set is only 20%, the training time of CNN model is
the shortest. As the size of the data set increasing, the DST-CNN model
is the fastest than the other models. However, the training time is also
depends on the size of the training dataset and the performance of the
computer. The performance of DST-CNN model and the outstanding
characterization learning ability can improve the computation time.

4.4. Residential households load identification experiment

In this section, the performance and practicability of our method
in residential households load identification are verified. We randomly
sampled the real steady-state current signals in No. 3 building in any
three days of May, and the sampling period is 24 h of one day in
Fig. 15(a). From the figure, the main power consumption time of
household equipment contains 6:00 a.m.-8:00 a.m., 11:00 a.m.-1:00
p.m., 6:00 p.m.-8:00 p.m., and 9:00 p.m.-10:30 p.m.. Considering the
imaginable error in raw data set, the method of event detection and
pre-processing are used, and used the DST-CNN method to realize the
load identification. The frequency-domain characteristic map and the
experimental results are showed in Fig. 15(b), Fig. 16, respectively.

From Fig. 16, the results of load identification for the four types
of household appliance loads are clearly showed, and the each row
represents a complete collection date cycle, which according to the
three datasets in Fig. 15. Induction cooker and water heater work in the
same pattern, refrigerator and micro-wave oven work in three different
types work patterns respectively, and each work pattern present a
different current characteristic waveform.

In the residential households loads identification experiment, a com-
plete experimental process is clearly presented, and these results prove
11
Fig. 16. The results of residential load identification in No. 3 family.

the practicability of the proposed method for NILMI. These results also
demonstrate that our model can improve the ability of load abstract
feature representation and the accuracy of the load fine-grained iden-
tification. Especially, in the multi-load identification experiment, the
complex load features are accurately captured, which concludes that
the complex state of load can be considered as a combination of the
single state. Using the representative dataset to validate the proposed
method, and it demonstrates that the method can improve the accuracy
of load feature extraction and identification. Using the different data
sets to validate the method, and it demonstrates the high reliability.

5. Conclusions

In this article, a reliable deep learning-based algorithm framework
for IoT loads identification, DST-CNN, is proposed to address the prob-
lems of the incomplete discrimination of load feature, the accuracy
and reliability of the identification mode, and the generalization and
global optimization. DST-CNN method enhances the effectiveness of the
load signal by AM-PCA method, improves the ability of load abstract
characteristics representation by reconstructing DNN, and achieves the
fine-grained accurate identification of load by a LSTM-RNN with the
spatio-temporal feature recognition mechanism. The significant perfor-
mance improvements of our proposed method are verified by extensive
experiments. Applying the proposed method help to establish the hier-
archical knowledge base of electrical equipment, which covering the
information such as power, operating mode and time consumption.
This way can help the demand-side of the smart grids to accurately
obtain the power consumption information of the user, and increase the
Fig. 15. The time-domain waveform and the frequency feature map.(a)The time-domain waveform.(b)The frequency feature mapping.
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electric power efficiency of the customers and load shifting in IoT load
monitoring system. In our future work, DST-CNN will be used on the
more complex data sets, without reducing the accuracy of recognition
and adding the time complexity.
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